Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Mol Pharmacol ; 105(5): 359-373, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458773

RESUMO

Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.


Assuntos
Doenças Metabólicas , Neuropeptídeos , Humanos , Receptores da Calcitonina/metabolismo , Proteínas Modificadoras da Atividade de Receptores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores de Peptídeos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade
2.
Peptides ; 171: 171118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012983

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition characterized by widespread inflammation and pulmonary edema. Adrenomedullin (AM), a bioactive peptide with various functions, is expected to be applied in treating ARDS. Its functions are regulated primarily by two receptor activity-modifying proteins, RAMP2 and RAMP3, which bind to the AM receptor calcitonin receptor-like receptor (CLR). However, the roles of RAMP2 and RAMP3 in ARDS remain unclear. We generated a mouse model of ARDS via intratracheal administration of lipopolysaccharide (LPS), and analyzed the pathophysiological significance of RAMP2 and RAMP3. RAMP2 expression declined with LPS administration, whereas RAMP3 expression increased at low doses and decreased at high doses of LPS. After LPS administration, drug-inducible vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-) showed reduced survival, increased lung weight, and had more apoptotic cells in the lungs. DI-E-RAMP2-/- mice exhibited reduced expression of Epac1 (which regulates vascular endothelial cell barrier function), while RAMP3 was upregulated in compensation. In contrast, after LPS administration, RAMP3-/- mice showed no significant changes in survival, lung weight, or lung pathology, although they exhibited significant downregulation of iNOS, TNF-α, and NLRP3 during the later stages of inflammation. Based on transcriptomic analysis, RAMP2 contributed more to the circulation-regulating effects of AM, whereas RAMP3 contributed more to its inflammation-regulating effects. These findings indicate that, while both RAMP2 and RAMP3 participate in ARDS pathogenesis, their functions differ distinctly. Further elucidation of the pathophysiological significance and functional differences between RAMP2 and RAMP3 is critical for the future therapeutic application of AM in ARDS.


Assuntos
Adrenomedulina , Síndrome do Desconforto Respiratório , Animais , Camundongos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Inflamação , Lipopolissacarídeos , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Síndrome do Desconforto Respiratório/genética
3.
J Biol Chem ; 299(6): 104785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146967

RESUMO

Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.


Assuntos
Adrenomedulina , Peptídeo Relacionado com Gene de Calcitonina , Proteínas Modificadoras da Atividade de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animais , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estabilidade Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 299(5): 104664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003505

RESUMO

Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.


Assuntos
Prurido , Proteínas Modificadoras da Atividade de Receptores , Receptores Acoplados a Proteínas G , Membrana Celular/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Prurido/metabolismo , Ligação Proteica , Humanos
5.
Pharmacol Rev ; 75(1): 1-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757898

RESUMO

G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.


Assuntos
Proteínas de Membrana , Receptores Acoplados a Proteínas G , Humanos , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Ligantes , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Membrana/metabolismo
6.
Gen Comp Endocrinol ; 328: 114123, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075341

RESUMO

The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.


Assuntos
Depressores do Apetite , Cordados , Neuropeptídeos , Hormônios Peptídicos , Adrenomedulina , Animais , Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Cálcio , Peixes/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Mamíferos , Proteínas Modificadoras da Atividade de Receptores , Receptores da Calcitonina/genética , Tomografia Computadorizada por Raios X , Vertebrados
7.
Front Cell Infect Microbiol ; 12: 812848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651757

RESUMO

Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism's survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Leishmania , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Comunicação Celular , Humanos , Leishmania/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Substância P/farmacologia
8.
Eur J Pharmacol ; 914: 174667, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863711

RESUMO

Antagonists of the P2X7 receptor (P2X7R) have the potential to treat diseases where neuroinflammation is present such as depression, chronic pain and Alzheimer's disease. We recently developed a structural hybrid (C1; 1-((adamantan-1-yl)methyl)-2-cyano-3-(quinolin-5-yl)guanidine) of a purported competitive P2X7R antagonist (C2; 2-cyano-1-((1S)-1-phenylethyl)-3-(quinolin-5-yl)guanidine) and a likely negative allosteric modulator (NAM) of the P2X7R (C3; N-((adamantan-1-yl)methyl)-2-chloro-5-methoxybenzamide). Here we aimed to pharmacologically characterize C1, to gain insights into how select structural components impact antagonist interaction with the P2X7R. A second aim was to examine the role of the peptide LL-37, an apparent activator of the P2X7R, and compare the ability of multiple P2X7R antagonists to block its effects. Compounds 1, 2 and 3 were characterised using washout, Schild and receptor protection studies, all using dye uptake assays in HEK293 cells expressing the P2X7R. LL-37 was examined in the same HEK293 cells and THP-1 monocytes. Compounds 2 and 3 acted as a BzATP-competitive antagonist and NAM of the P2X7R respectively. Compound 1 was a slowly reversible NAM of the P2X7R suggesting the incorporation of an appropriately positioned adamantane promotes binding to the allosteric site of the P2X7R. LL-37 was shown to potentiate the ability of ATP to induce dye uptake at low concentrations (1-3 µg mL-1) or induce dye uptake alone at higher concentrations (10-20 µg mL-1). None of the P2X7R antagonists studied were able to block LL-37-induced dye uptake bringing in to question the ability of current P2X7R antagonists to inhibit the inflammatory action of LL-37 in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Doenças Neuroinflamatórias , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Desenvolvimento de Medicamentos , Células HEK293 , Humanos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Porinas/metabolismo , Agonistas Purinérgicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/classificação , Antagonistas do Receptor Purinérgico P2X/farmacologia , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Células THP-1 , Catelicidinas
9.
Br J Pharmacol ; 179(3): 416-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289083

RESUMO

BACKGROUND AND PURPOSE: The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH: Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS: We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and ßCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS: Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Transtornos de Enxaqueca , Hormônios Peptídicos , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Ligantes , Camundongos , Ratos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina , Receptores da Calcitonina/química
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1282-1288, 2021 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34911614

RESUMO

OBJECTIVES: To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions. METHODS: HPMECs were randomly divided into an air group and a hyperoxia group (n=3 each).The HPMECs in the hyperoxia group were cultured in an atmosphere of 92% O2 (3 L/minute) +5% CO2. RT-qPCR and Western blot were used to measure the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB. Other HPMECs were divided into a non-interference group and an interference group (n=3 each), and the mRNA and protein expression levels of ADM, ERK1/2, and PKB were measured after the HPMECs in the interference group were transfected with ADM siRNA. RESULTS: Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (P<0.05). Compared with the non-interference group, the interference group had significant reductions in the mRNA and protein expression levels of ADM, ERK1/2, and PKB (P<0.05). CONCLUSIONS: ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.


Assuntos
Hiperóxia , Lesão Pulmonar , Adrenomedulina/genética , Células Endoteliais , Humanos , Hiperóxia/complicações , Proteínas Modificadoras da Atividade de Receptores
11.
Eur J Neurosci ; 54(3): 4863-4876, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189795

RESUMO

The role of receptor activity-modifying proteins (RAMPs) in modulating the pharmacological effects of an amylin receptor selective agonist (NN1213) or the dual amylin-calcitonin receptor agonist (DACRA), salmon calcitonin (sCT), was tested in three RAMP KO mouse models, RAMP1, RAMP3 and RAMP1/3 KO. Male wild-type (WT) and knockout (KO) littermate mice were fed a 45% high-fat diet for 20 weeks prior to the 3-week treatment period. A decrease in body weight after NN1213 was observed in all WT mice, whereas sCT had no effect. The absence of RAMP1 had no significant effect on NN1213 efficacy, and sCT was still inactive. However, the absence of RAMP3 impeded NN1213 efficacy but improved sCT efficacy. Similar results were observed in RAMP1/3 KO suggesting that the amylin receptor 3 (AMY3 = CTR + RAMP3) is necessary for NN1213's maximal action on body weight and food intake and that the lack of AMY3 allowed sCT to be active. These results suggest that the chronic use of DACRA such as sCT can have unfavourable effect on body weight loss in mice (which differs from the situation in rats), whereas the use of the amylin receptor selective agonist does not. AMY3 seems to play a crucial role in modulating the action of these two compounds, but in opposite directions. The assessment of a long-term effect of amylin and DACRA in different rodent models is necessary to understand potential physiological beneficial and unfavourable effects on weight loss before its transition to clinical trials.


Assuntos
Agonistas dos Receptores da Amilina , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Agonistas dos Receptores da Amilina/farmacologia , Animais , Peso Corporal , Calcitonina , Ingestão de Alimentos , Masculino , Camundongos , Ratos , Proteína 1 Modificadora da Atividade de Receptores , Proteína 3 Modificadora da Atividade de Receptores , Proteínas Modificadoras da Atividade de Receptores , Receptores da Calcitonina
12.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545715

RESUMO

Adrenomedullin (AM) is a peptide hormone with multiple physiological functions, which are regulated by its receptor activity-modifying proteins, RAMP2 and RAMP3. We previously reported that AM or RAMP2 knockout (KO) (AM-/-, RAMP2-/-) is embryonically lethal in mice, whereas RAMP3-/- mice are apparently normal. AM, RAMP2, and RAMP3 are all highly expressed in the heart; however, their functions there are not fully understood. Here, we analyzed the pathophysiological functions of the AM-RAMP2 and AM-RAMP3 systems in hearts subjected to cardiovascular stress. Cardiomyocyte-specific RAMP2-/- (C-RAMP2-/-) and RAMP3-/- showed no apparent heart failure at base line. After 1 week of transverse aortic constriction (TAC), however, C-RAMP2-/- exhibited significant cardiac hypertrophy, decreased ejection fraction, and increased fibrosis compared with wild-type mice. Both dP/dtmax and dP/dtmin were significantly reduced in C-RAMP2-/-, indicating reduced ventricular contractility and relaxation. Exposing C-RAMP2-/- cardiomyocytes to isoproterenol enhanced their hypertrophy and oxidative stress compared with wild-type cells. C-RAMP2-/- cardiomyocytes also contained fewer viable mitochondria and showed reduced mitochondrial membrane potential and respiratory capacity. RAMP3-/- also showed reduced systolic function and enhanced fibrosis after TAC, but those only became apparent after 4 weeks. A reduction in cardiac lymphatic vessels was the characteristic feature in RAMP3-/-. These observations indicate the AM-RAMP2 system is necessary for early adaptation to cardiovascular stress through regulation of cardiac mitochondria. AM-RAMP3 is necessary for later adaptation through regulation of lymphatic vessels. The AM-RAMP2 and AM-RAMP3 systems thus play separate critical roles in the maintenance of cardiovascular homeostasis against cardiovascular stress.


Assuntos
Adrenomedulina/fisiologia , Sistema Cardiovascular/fisiopatologia , Proteínas Modificadoras da Atividade de Receptores/fisiologia , Estresse Fisiológico/fisiologia , Adrenomedulina/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Células Cultivadas , Constrição Patológica , Estenose Coronária/genética , Estenose Coronária/metabolismo , Estenose Coronária/patologia , Estenose Coronária/fisiopatologia , Hemodinâmica/genética , Homeostase/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Estresse Oxidativo/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/fisiologia , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/fisiologia , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Front Endocrinol (Lausanne) ; 12: 807882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095771

RESUMO

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass and response of bone to mechanical loading mimicking exercise. Mouse pups lacking RAMP3 are healthy and viable, having accelerated development of the skeleton as assessed by degree of mineralisation of specific bones, and by microCT measurements. Specifically, we observed that neonates and young mice have increased bone volume and mineralisation in hindlimbs and vertebrae and increased thickness of bone trabeculae. These changes are associated with increased osteoblast numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in epiphyseal growth plates. Effects persist for some weeks after birth, but differences in gross bone mass between RAMP3 and WT mice lose significance in older animals although architectural differences persist. Responses of bones of 17-week old mice to mechanical loading that mimics effects of vigorous exercise is increased significantly in Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3, but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had increased expression ß-catenin, a component of the canonical Wnt signalling pathway known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more GPCRS. However, as antagonists of RAMP-interacting receptors are growing in availability, there appears the likelihood that manipulation of the RAMP3 signalling system could provide anabolic effects therapeutically.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína 1 Modificadora da Atividade de Receptores , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo
14.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922248

RESUMO

OBJECTIVES@#To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions.@*METHODS@#HPMECs were randomly divided into an air group and a hyperoxia group (@*RESULTS@#Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (@*CONCLUSIONS@#ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.


Assuntos
Humanos , Adrenomedulina/genética , Células Endoteliais , Hiperóxia/complicações , Lesão Pulmonar , Proteínas Modificadoras da Atividade de Receptores
15.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785054

RESUMO

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.


Assuntos
Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/farmacologia , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Mutação com Perda de Função , Obesidade/genética , Ligação Proteica , Conformação Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/química , alfa-MSH/farmacologia
16.
Adv Pharmacol ; 88: 115-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416865

RESUMO

Receptor activity-modifying proteins (RAMPs) are a family of three single span transmembrane proteins in humans that interact with many GPCRs and can modulate their function. RAMPs were discovered as key components of the calcitonin gene-related peptide and adrenomedullin receptors. They are required for transport of this class B GPCR, calcitonin receptor-like receptor (CLR), to the cell surface and determine its peptide ligand binding preferences. Soon thereafter RAMPs were shown to modulate the binding of calcitonin and amylin peptides to the related calcitonin receptor (CTR) and in the years since an ever-growing number of RAMP-interacting receptors have been identified including most if not all of the 15 class B GPCRs and several GPCRs from other families. Studies of CLR, CTR, and a handful of other GPCRs revealed that RAMPs are able to modulate various aspects of receptor function including trafficking, ligand binding, and signaling. Here, we review RAMP interactions and functions with an emphasis on class B receptors for which our understanding is most advanced. A key focus is to discuss recent evidence that RAMPs serve as endogenous allosteric modulators of CLR and CTR. We discuss structural studies of RAMP-CLR complexes and CTR and biochemical and pharmacological studies that collectively have significantly expanded our understanding of the mechanistic basis for RAMP modulation of these class B GPCRs. Last, we consider the implications of these findings for drug development targeting RAMP-CLR/CTR complexes.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Ligantes , Transdução de Sinais
17.
Trends Pharmacol Sci ; 41(4): 249-265, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115276

RESUMO

Receptor activity-modifying proteins (RAMPs) interact with G-protein-coupled receptors (GPCRs) to modify their functions, imparting significant implications upon their physiological and therapeutic potentials. Resurging interest in identifying RAMP-GPCR interactions has recently been fueled by coevolution studies and orthogonal technological screening platforms. These new studies reveal previously unrecognized RAMP-interacting GPCRs, many of which expand beyond Class B GPCRs. The consequences of these interactions on GPCR function and physiology lays the foundation for new molecular therapeutic targets, as evidenced by the recent success of erenumab. Here, we highlight recent papers that uncovered novel RAMP-GPCR interactions, human RAMP-GPCR disease-causing mutations, and RAMP-related human pathologies, paving the way for a new era of RAMP-targeted drug development.


Assuntos
Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Humanos , Terapia de Alvo Molecular , Mutação , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
18.
J Mol Neurosci ; 70(6): 930-944, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086679

RESUMO

The calcitonin gene-related peptide (CGRP) family of neuropeptides, consists of CGRP, adrenomedullin, amylin, and calcitonin. The receptors consist of either calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) which for function needs an accessory protein, receptor activity-modifying proteins (RAMPs). CGRP has a pivotal role in primary headaches but the role of the other members of the CGRP family of peptides in headaches is not known. Here, we describe the expression of these molecules in the trigeminal ganglion (TG) to understand more on their possible role(s). Single or double immunohistochemistry were applied on frozen sections of rat TG using primary antibodies against CGRP, procalcitonin, calcitonin, adrenomedullin, amylin, RAMP1/2/3, CLR, and CTR. In addition, mRNA expression was measured by quantitative qPCR on TGs. CGRP and calcitonin showed rich expression in the cytoplasm of small to medium-sized neurons, and co-localized sometimes. Procalcitonin was observed in the glial cells. Immunoreactive fibers storing both CGRP and calcitonin were also observed. Adrenomedullin immunoreactivity was found in the satellite glial cells and in fibers, probably the myelinating Schwann cells. Amylin was found in the cytoplasm in many TG neurons. Levels of mRNA expression for adrenomedullin, amylin, CLR, RAMP1, RAMP2, RAMP3, and CTR were measured using qPCR. The experiments verified the expression of mRNA in the TG with the exception of CTR, which was above the limit of detection indicating little or no mRNA expression. In addition to the well-known CGRP receptor (CLR/RAMP1) and the receptor for calcitonin-CTR, we propose that other receptors exist in the rat TG: adrenomedullin receptor AM2 (CLR/RAMP3) in mainly the satellite glial cells, amylin receptors AMY1 (CTR/RAMP1) in mainly neurons, and AMY3 (CTR/RAMP3) in the satellite glial cells. It is important to compare peptides and receptors side-by-side in studies to help address questions of actions resulting from cross-reactivity between receptors. Several of the diverse biological actions of the CGRP family of peptides are clinically relevant. Our findings demonstrate the specific ligand and receptor sites in the rat trigeminal ganglion, highlighting recognition mechanisms to facilitate drug development.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores da Calcitonina/genética , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
19.
Sci Adv ; 5(9): eaaw2778, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31555726

RESUMO

Receptor activity-modifying proteins (RAMPs) have been shown to modulate the functions of several G protein-coupled receptors (GPCRs), but potential direct interactions among the three known RAMPs and hundreds of GPCRs have never been investigated. Focusing mainly on the secretin-like family of GPCRs, we engineered epitope-tagged GPCRs and RAMPs, and developed a multiplexed suspension bead array (SBA) immunoassay to detect GPCR-RAMP complexes from detergent-solubilized lysates. Using 64 antibodies raised against the native proteins and 4 antibodies targeting the epitope tags, we mapped the interactions among 23 GPCRs and 3 RAMPs. We validated nearly all previously reported secretin-like GPCR-RAMP interactions, and also found previously unidentified RAMP interactions with additional secretin-like GPCRs, chemokine receptors, and orphan receptors. The results provide a complete interactome of secretin-like GPCRs with RAMPs. The SBA strategy will be useful to search for additional GPCR-RAMP complexes and other interacting membrane protein pairs in cell lines and tissues.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secretina/metabolismo , Células HEK293 , Humanos , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores Acoplados a Proteínas G/genética , Secretina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...